On the inflation, deflation and self-similarity of binary sequences. Application: a onedimensional diatomic quasicrystal

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1987 J. Phys. A: Math. Gen. 205743
(http://iopscience.iop.org/0305-4470/20/16/551)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 16:07

Please note that terms and conditions apply.

CORRIGENDUM

On the inflation, deflation and self-similarity of binary sequences. Application: a onedimensional diatomic quasicrystal
Aviram I 1987 J. Phys. A: Math. Gen. 20 1025-43
(a) The formulation of lemma L on $p 1027$ will be improved if one replaces the first sentence by the following: 'Let σ, τ be real numbers, one of which (say σ) is assumed irrational. Let θ_{1} and θ_{2} be real numbers, and $k \in N$.' The proof remains unchanged. As a consequence of this reformulation, the derivation of $\alpha^{\prime}, \beta^{\prime}, \omega^{\prime}$, immediately following equation (30) constitutes a constructive proof of the fact that the deflated sequence is indeed a p-sequence. The author is indebted to S Goshen for making this observation.
(b) On p 1031, the first line following equation (19), replace 'At $\beta=h-1 \ldots$ ' by 'At $\beta=h \ldots$.
(c) On p 1031, the fourth line following equation (19), the equality in the text should read: $\left(h-\frac{1}{2}\right) /\left(h+\frac{1}{2}\right)=h /(2 h+1)+(h-1) /(2 h+1)$.

